If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+(2a)^2=400
We move all terms to the left:
a^2+(2a)^2-(400)=0
We add all the numbers together, and all the variables
3a^2-400=0
a = 3; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·3·(-400)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*3}=\frac{0-40\sqrt{3}}{6} =-\frac{40\sqrt{3}}{6} =-\frac{20\sqrt{3}}{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*3}=\frac{0+40\sqrt{3}}{6} =\frac{40\sqrt{3}}{6} =\frac{20\sqrt{3}}{3} $
| 13.5x=-7+94.5 | | 6x=19,5 | | 4y-3+y+33=7y+30-5y | | -8+3=-24+13x | | 4y-10+y+56=5y=50-2y | | 3v^+18v=0 | | -5(0.1x+0.2)-0.6=-0.1 | | 1.8x+3.6=6-4x+15 | | 2x=19/2 | | (6+u)(5u+9)=0 | | 883.39/1,257,521=x/1,007,369 | | 2(5x+20)=6(2x=4) | | 10x+8=9x+1 | | 8(8n+4)=4(-7n+8) | | 4m+3=23;6 | | y/3+4=5/3 | | 4/5x-3=2=9/10x | | r/6=8;48 | | (x+3)/4=(x/2)+(2/5) | | X³+2x-12=0 | | (x-5)/6=1-(x-5) | | (x+3)/5=(4x-3)/15 | | p/3-3/8p=5 | | F(x)=(x-1)(x+2) | | 3x+27=-x15 | | 4z=20;10 | | x^2+42x+4320=0 | | 5x+12=5(x-1)+2 | | 7/6x^2-114x-600=0 | | 9x+8-5x=44-5x | | 10x^2+66x-720=0 | | 2n+900=3720 |